Tools for Analysis of the Microbiome (2024)

1. Song EJ, Lee ES, and Nam YD, Progress of analytical tools and techniques for human gut microbiome research. J Microbiol, 2018. 56(10): p. 693–705. [PubMed] [Google Scholar]

2. Thursby E and Juge N, Introduction to the human gut microbiota. Biochem J, 2017. 474(11): p. 1823–1836. [PMC free article] [PubMed] [Google Scholar]

3. Turnbaugh PJ, et al., The human microbiome project. Nature, 2007. 449(7164): p. 804–10. [PMC free article] [PubMed] [Google Scholar]

4. Tringe SG and Rubin EM, Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet, 2005. 6(11): p. 805–14. [PubMed] [Google Scholar]

5. Riesenfeld CS, Schloss PD, and Handelsman J, Metagenomics: genomic analysis of microbial communities. Annu Rev Genet, 2004. 38: p. 525–52. [PubMed] [Google Scholar]

6. Qin J, et al., A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010. 464(7285): p. 59–65. [PMC free article] [PubMed] [Google Scholar]

7. Integrative HMPRNC, The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe, 2014. 16(3): p. 276–89. [PMC free article] [PubMed] [Google Scholar]

8. Bantock GG, The Modern Doctrine of Bacteriology, or the Germ Theory of Disease. Br Med J, 1899. 1(1997): p. 846–8. [PMC free article] [PubMed] [Google Scholar]

9. Belkaid Y and Hand TW, Role of the microbiota in immunity and inflammation. Cell, 2014. 157(1): p. 121–41. [PMC free article] [PubMed] [Google Scholar]

10. Maruvada P, et al., The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe, 2017. 22(5): p. 589–599. [PubMed] [Google Scholar]

11. Jamshidi P, et al., Is there any association between gut microbiota and type 1 diabetes?A systematic review. Gut Pathog, 2019. 11: p. 49. [PMC free article] [PubMed] [Google Scholar]

12. Ahmadmehrabi S and Tang WHW, Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol, 2017. 32(6): p. 761–766. [PMC free article] [PubMed] [Google Scholar]

13. Scott AJ, et al., International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut, 2019. 68(9): p. 1624–1632. [PMC free article] [PubMed] [Google Scholar]

14. Gopalakrishnan V, et al., The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell, 2018. 33(4): p. 570–580. [PMC free article] [PubMed] [Google Scholar]

15. Shen L and Ji HF, Associations Between Gut Microbiota and Alzheimer’s Disease: Current Evidences and Future Therapeutic and Diagnostic Perspectives. J Alzheimers Dis, 2019. 68(1): p. 25–31. [PubMed] [Google Scholar]

16. Rieder R, et al., Microbes and mental health: A review. Brain Behav Immun, 2017. 66: p. 9–17. [PubMed] [Google Scholar]

17. Vetrovsky T and Baldrian P, The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One, 2013. 8(2): p. e57923. [PMC free article] [PubMed] [Google Scholar]

18. Xue Z, Kable ME, and Marco ML, Impact of DNA Sequencing and Analysis Methods on 16S rRNA Gene Bacterial Community Analysis of Dairy Products. mSphere, 2018. 3(5). [PMC free article] [PubMed] [Google Scholar]

19. Stackebrandt E and GOEBEL BM, Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International journal of systematic and evolutionary microbiology, 1994. 44(4): p. 846–849. [Google Scholar]

20. Yarza P, et al., Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol, 2014. 12(9): p. 635–45. [PubMed] [Google Scholar]

21. Johnson JS, et al., Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun, 2019. 10(1): p. 5029. [PMC free article] [PubMed] [Google Scholar]

22. Edgar RC, Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics, 2018. 34(14): p. 2371–2375. [PubMed] [Google Scholar]

23. Hamady M and Knight R, Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res, 2009. 19(7): p. 1141–52. [PMC free article] [PubMed] [Google Scholar]

24. Wang Q, et al., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007. 73(16): p. 5261–7. [PMC free article] [PubMed] [Google Scholar]

25. McDonald D, et al., An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J, 2012. 6(3): p. 610–8. [PMC free article] [PubMed] [Google Scholar]

26. Yilmaz P, et al., The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res, 2014. 42(Database issue): p. D643–8. [PMC free article] [PubMed] [Google Scholar]

27. Schloss PD, et al., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009. 75(23): p. 7537–41. [PMC free article] [PubMed] [Google Scholar]

28. Caporaso JG, et al., QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010. 7(5): p. 335–6. [PMC free article] [PubMed] [Google Scholar]

29. Callahan BJ, et al., DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods, 2016. 13(7): p. 581–3. [PMC free article] [PubMed] [Google Scholar]

30. Walker JN, et al., Insights into the Microbiome of Breast Implants and Periprosthetic Tissue in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Sci Rep, 2019. 9(1): p. 10393. [PMC free article] [PubMed] [Google Scholar]

31. Zhou W, et al., Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature, 2019. 569(7758): p. 663–671. [PMC free article] [PubMed] [Google Scholar]

32. Callahan BJ, et al., High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res, 2019. 47(18): p. e103. [PMC free article] [PubMed] [Google Scholar]

33. Quince C, et al., Shotgun metagenomics, from sampling to analysis. Nat Biotechnol, 2017. 35(9): p. 833–844. [PubMed] [Google Scholar]

34. Sharpton TJ, An introduction to the analysis of shotgun metagenomic data. Front Plant Sci, 2014. 5: p. 209. [PMC free article] [PubMed] [Google Scholar]

35. Huffnagle GB and Noverr MC, The emerging world of the fungal microbiome. Trends Microbiol, 2013. 21(7): p. 334–41. [PMC free article] [PubMed] [Google Scholar]

36. Sam QH, Chang MW, and Chai LY, The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host. Int J Mol Sci, 2017. 18(2). [PMC free article] [PubMed] [Google Scholar]

37. Nash AK, et al., The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome, 2017. 5(1): p. 153. [PMC free article] [PubMed] [Google Scholar]

38. Stern J, et al., Virome and bacteriome: two sides of the same coin. Curr Opin Virol, 2019. 37: p. 37–43. [PMC free article] [PubMed] [Google Scholar]

39. Mukhopadhya I, et al., The gut virome: the ‘missing link’ between gut bacteria and host immunity?Therap Adv Gastroenterol, 2019. 12: p. 1756284819836620. [PMC free article] [PubMed] [Google Scholar]

40. Moreno-Gallego JL, et al., Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host Microbe, 2019. 25(2): p. 261–272.e5. [PMC free article] [PubMed] [Google Scholar]

41. Xia LC, et al., Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS One, 2011. 6(12): p. e27992. [PMC free article] [PubMed] [Google Scholar]

42. Nayfach S and Pollard KS, Toward Accurate and Quantitative Comparative Metagenomics. Cell, 2016. 166(5): p. 1103–1116. [PMC free article] [PubMed] [Google Scholar]

43. Qin J, et al., A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010. 464(7285): p. 59–65. [PMC free article] [PubMed] [Google Scholar]

44. Ayling M, Clark MD, and Leggett RM, New approaches for metagenome assembly with short reads. Brief Bioinform, 2019. [PMC free article] [PubMed] [Google Scholar]

45. Compeau PE, Pevzner PA, and Tesler G, How to apply de Bruijn graphs to genome assembly. Nat Biotechnol, 2011. 29(11): p. 987–91. [PMC free article] [PubMed] [Google Scholar]

46. Namiki T, et al., MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res, 2012. 40(20): p. e155. [PMC free article] [PubMed] [Google Scholar]

47. Peng Y, et al., IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 2012. 28(11): p. 1420–8. [PubMed] [Google Scholar]

48. Nurk S, et al., metaSPAdes: a new versatile metagenomic assembler. Genome Res, 2017. 27(5): p. 824–834. [PMC free article] [PubMed] [Google Scholar]

49. Li D, et al., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015. 31(10): p. 1674–6. [PubMed] [Google Scholar]

50. Claesson MJ, Clooney AG, and O’Toole PW, A clinician’s guide to microbiome analysis. Nat Rev Gastroenterol Hepatol, 2017. 14(10): p. 585–595. [PubMed] [Google Scholar]

51. Wood DE and Salzberg SL, Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol, 2014. 15(3): p. R46. [PMC free article] [PubMed] [Google Scholar]

52. Truong DT, et al., MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods, 2015. 12(10): p. 902–3. [PubMed] [Google Scholar]

53. Bashiardes S, Zilberman-Schapira G, and Elinav E, Use of Metatranscriptomics in Microbiome Research. Bioinform Biol Insights, 2016. 10: p. 19–25. [PMC free article] [PubMed] [Google Scholar]

54. Bikel S, et al., Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J, 2015. 13: p. 390–401. [PMC free article] [PubMed] [Google Scholar]

55. Kanehisa M and Goto S, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1): p. 27–30. [PMC free article] [PubMed] [Google Scholar]

56. Xie Y, et al., SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014. 30(12): p. 1660–6. [PubMed] [Google Scholar]

57. Jorth P, et al., Metatranscriptomics of the human oral microbiome during health and disease. MBio, 2014. 5(2): p. e01012–14. [PMC free article] [PubMed] [Google Scholar]

58. Lamichhane S, et al., Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods, 2018. 149: p. 3–12. [PubMed] [Google Scholar]

59. Zierer J, et al., The fecal metabolome as a functional readout of the gut microbiome. Nat Genet, 2018. 50(6): p. 790–795. [PMC free article] [PubMed] [Google Scholar]

60. Lai LA, et al., Metaproteomics Study of the Gut Microbiome. Methods Mol Biol, 2019. 1871: p. 123–132. [PubMed] [Google Scholar]

61. Blakeley-Ruiz JA, et al., Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes. Microbiome, 2019. 7(1): p. 18. [PMC free article] [PubMed] [Google Scholar]

62. Kuczynski J, et al., Experimental and analytical tools for studying the human microbiome. Nat Rev Genet, 2011. 13(1): p. 47–58. [PMC free article] [PubMed] [Google Scholar]

63. Chao A, Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 1987. 43(4): p. 783–91. [PubMed] [Google Scholar]

64. Kim BR, et al., Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol, 2017. 27(12): p. 2089–2093. [PubMed] [Google Scholar]

65. Knight R, et al., Best practices for analysing microbiomes. Nat Rev Microbiol, 2018. 16(7): p. 410–422. [PubMed] [Google Scholar]

66. Bent SJ and Forney LJ, The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J, 2008. 2(7): p. 689–95. [PubMed] [Google Scholar]

67. Barwell LJ, Isaac NJ, and Kunin WE, Measuring beta-diversity with species abundance data. J Anim Ecol, 2015. 84(4): p. 1112–22. [PMC free article] [PubMed] [Google Scholar]

68. Staley C, Kaiser T, and Khoruts A, Clinician Guide to Microbiome Testing. Dig Dis Sci, 2018. 63(12): p. 3167–3177. [PubMed] [Google Scholar]

69. Lozupone C and Knight R, UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol, 2005. 71(12): p. 8228–35. [PMC free article] [PubMed] [Google Scholar]

70. McMurdie PJ and Holmes S, phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 2013. 8(4): p. e61217. [PMC free article] [PubMed] [Google Scholar]

71. Langille MG, et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol, 2013. 31(9): p. 814–21. [PMC free article] [PubMed] [Google Scholar]

72. Asshauer KP, et al., Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 2015. 31(17): p. 2882–4. [PMC free article] [PubMed] [Google Scholar]

73. Edgar RC, Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010. 26(19): p. 2460–1. [PubMed] [Google Scholar]

74. Huerta-Cepas J, et al., eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res, 2016. 44(D1): p. D286–93. [PMC free article] [PubMed] [Google Scholar]

75. Tatusov RL, et al., The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003. 4: p. 41. [PMC free article] [PubMed] [Google Scholar]

76. Finn RD, et al., Pfam: the protein families database. Nucleic Acids Res, 2014. 42(Database issue): p. D222–30. [PMC free article] [PubMed] [Google Scholar]

77. Selengut JD, et al., TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res, 2007. 35(Database issue): p. D260–4. [PMC free article] [PubMed] [Google Scholar]

78. Hunter S, et al., InterPro: the integrative protein signature database. Nucleic Acids Res, 2009. 37(Database issue): p. D211–5. [PMC free article] [PubMed] [Google Scholar]

79. Ulgen E, Ozisik O, and Sezerman OU, pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front Genet, 2019. 10: p. 858. [PMC free article] [PubMed] [Google Scholar]

80. Nishida K, et al., KEGGscape: a Cytoscape app for pathway data integration. F1000Res, 2014. 3: p. 144. [PMC free article] [PubMed] [Google Scholar]

81. Keegan KP, Glass EM, and Meyer F, MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function. Methods Mol Biol, 2016. 1399: p. 207–33. [PubMed] [Google Scholar]

82. Huson DH, et al., MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput Biol, 2016. 12(6): p. e1004957. [PMC free article] [PubMed] [Google Scholar]

83. Abubucker S, et al., Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol, 2012. 8(6): p. e1002358. [PMC free article] [PubMed] [Google Scholar]

84. Peters DL, et al., Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics, 2019. 19(16): p. e1800363. [PubMed] [Google Scholar]

85. Verberkmoes NC, et al., Shotgun metaproteomics of the human distal gut microbiota. ISME J, 2009. 3(2): p. 179–89. [PubMed] [Google Scholar]

86. Galloway-Pena J and Guindani M, Editorial: Novel Approaches in Microbiome Analyses and Data Visualization. Front Microbiol, 2018. 9: p. 2274. [PMC free article] [PubMed] [Google Scholar]

87. Sudarikov K, Tyakht A, and Alexeev D, Methods for The Metagenomic Data Visualization and Analysis. Curr Issues Mol Biol, 2017. 24: p. 37–58. [PubMed] [Google Scholar]

88. Xia Y and Sun J, Hypothesis Testing and Statistical Analysis of Microbiome. Genes Dis, 2017. 4(3): p. 138–148. [PMC free article] [PubMed] [Google Scholar]

89. Kelly BJ, et al., Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics, 2015. 31(15): p. 2461–8. [PMC free article] [PubMed] [Google Scholar]

90. Tang ZZ, Chen G, and Alekseyenko AV, PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances. Bioinformatics, 2016. 32(17): p. 2618–25. [PMC free article] [PubMed] [Google Scholar]

91. Mandal S, et al., Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis, 2015. 26: p. 27663. [PMC free article] [PubMed] [Google Scholar]

92. Staley C and Sadowsky MJ, Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. J Microbiol Methods, 2018. 154: p. 14–18. [PubMed] [Google Scholar]

93. Segata N, et al., Metagenomic biomarker discovery and explanation. Genome Biol, 2011. 12(6): p. R60. [PMC free article] [PubMed] [Google Scholar]

94. Friedman J and Alm EJ, Inferring correlation networks from genomic survey data. PLoS Comput Biol, 2012. 8(9): p. e1002687. [PMC free article] [PubMed] [Google Scholar]

95. Fang H, et al., CCLasso: correlation inference for compositional data through Lasso. Bioinformatics, 2015. 31(19): p. 3172–80. [PMC free article] [PubMed] [Google Scholar]

96. Kurtz ZD, et al., Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol, 2015. 11(5): p. e1004226. [PMC free article] [PubMed] [Google Scholar]

97. Faust K, et al., Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol, 2012. 8(7): p. e1002606. [PMC free article] [PubMed] [Google Scholar]

98. La Rosa PS, et al., Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS One, 2012. 7(12): p. e52078. [PMC free article] [PubMed] [Google Scholar]

99. Karpinets TV, Park BH, and Uberbacher EC, Analyzing large biological datasets with association networks. Nucleic Acids Res, 2012. 40(17): p. e131. [PMC free article] [PubMed] [Google Scholar]

100. Knights D, Costello EK, and Knight R, Supervised classification of human microbiota. FEMS Microbiol Rev, 2011. 35(2): p. 343–59. [PubMed] [Google Scholar]

101. Zhang Q, et al., Selection of models for the analysis of risk-factor trees: leveraging biological knowledge to mine large sets of risk factors with application to microbiome data. Bioinformatics, 2015. 31(10): p. 1607–13. [PMC free article] [PubMed] [Google Scholar]

102. Kennedy EA, King KY, and Baldridge MT, Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol, 2018. 9: p. 1534. [PMC free article] [PubMed] [Google Scholar]

103. Gootenberg DB and Turnbaugh PJ, Companion animals symposium: humanized animal models of the microbiome. J Anim Sci, 2011. 89(5): p. 1531–7. [PubMed] [Google Scholar]

104. Douglas AE, Simple animal models for microbiome research. Nat Rev Microbiol, 2019. [PubMed] [Google Scholar]

105. Hacquard S, et al., Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host Microbe, 2015. 17(5): p. 603–16. [PubMed] [Google Scholar]

106. Pearce SC, et al., Intestinal in vitro and ex vivo Models to Study Host-Microbiome Interactions and Acute Stressors. Front Physiol, 2018. 9: p. 1584. [PMC free article] [PubMed] [Google Scholar]

107. Dutton JS, et al., Primary Cell-Derived Intestinal Models: Recapitulating Physiology. Trends Biotechnol, 2019. 37(7): p. 744–760. [PMC free article] [PubMed] [Google Scholar]

108. McDonald JA, et al., Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J Microbiol Methods, 2015. 108: p. 36–44. [PubMed] [Google Scholar]

109. Van den Abbeele P, et al., Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol, 2012. 5(1): p. 106–15. [PMC free article] [PubMed] [Google Scholar]

110. Auchtung JM, Robinson CD, and Britton RA, Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome, 2015. 3: p. 42. [PMC free article] [PubMed] [Google Scholar]

111. Stevens LJ, et al., A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci, 2019. 137: p. 104989. [PubMed] [Google Scholar]

112. Nigro G, et al., Intestinal Organoids as a Novel Tool to Study Microbes-Epithelium Interactions. Methods Mol Biol, 2019. 1576: p. 183–194. [PubMed] [Google Scholar]

113. Debelius J, et al., Tiny microbes, enormous impacts: what matters in gut microbiome studies?Genome Biol, 2016. 17(1): p. 217. [PMC free article] [PubMed] [Google Scholar]

114. Poussin C, et al., Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discov Today, 2018. 23(9): p. 1644–1657. [PubMed] [Google Scholar]

115. David LA, et al., Host lifestyle affects human microbiota on daily timescales. Genome Biol, 2014. 15(7): p. R89. [PMC free article] [PubMed] [Google Scholar]

116. Caporaso JG, et al., Moving pictures of the human microbiome. Genome Biol, 2011. 12(5): p. R50. [PMC free article] [PubMed] [Google Scholar]

117. Mehta RS, et al., Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol, 2018. 3(3): p. 347–355. [PMC free article] [PubMed] [Google Scholar]

118. Faith JJ, et al., The long-term stability of the human gut microbiota. Science, 2013. 341(6141): p. 1237439. [PMC free article] [PubMed] [Google Scholar]

119. Martinez I, Muller CE, and Walter J, Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS One, 2013. 8(7): p. e69621. [PMC free article] [PubMed] [Google Scholar]

120. Baksi KD, Kuntal BK, and Mande SS, ‘TIME’: A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data. Front Microbiol, 2018. 9: p. 36. [PMC free article] [PubMed] [Google Scholar]

121. Lugo-Martinez J, et al., Dynamic interaction network inference from longitudinal microbiome data. Microbiome, 2019. 7(1): p. 54. [PMC free article] [PubMed] [Google Scholar]

122. Cleary JG, et al., Quantitative Analysis of Shotgun Metagenomic Data with the Real Time Genomics Platform. Journal of Biomolecular Techniques : JBT, 2013. 24(Suppl): p. S33–S33. [Google Scholar]

123. UniProt: a hub for protein information. Nucleic Acids Res, 2015. 43(Database issue): p. D204–12. [PMC free article] [PubMed] [Google Scholar]

124. Misra BB, et al., Integrated Omics: Tools, Advances, and Future Approaches. J Mol Endocrinol, 2018. [PubMed] [Google Scholar]

125. Noor E, Cherkaoui S, and Sauer U, Biological insights through omics data integration. Current Opinion in Systems Biology, 2019. 15: p. 39–47. [Google Scholar]

126. Baron SA, Diene SM, and Rolain J-M, Human microbiomes and antibiotic resistance. Human Microbiome Journal, 2018. 10: p. 43–52. [Google Scholar]

127. Escudeiro P, et al., Antibiotic Resistance Gene Diversity and Virulence Gene Diversity Are Correlated in Human Gut and Environmental Microbiomes. mSphere, 2019. 4(3). [PMC free article] [PubMed] [Google Scholar]

128. Thomas AM and Segata N, Multiple levels of the unknown in microbiome research. BMC Biol, 2019. 17(1): p. 48. [PMC free article] [PubMed] [Google Scholar]

129. Bernard G, et al., Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery. Genome Biol Evol, 2018. 10(3): p. 707–715. [PMC free article] [PubMed] [Google Scholar]

Tools for Analysis of the Microbiome (2024)
Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 5821

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.